ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BERLIN VERSION 24

Let F,2 be a field F,[i]/(i> + 1). We define a set C> with
(251) Cr={(X,Y)€Fp2 x Fpe | Y> =X +3(i+9)"'}U{(0,0)}

We define a binary operation + and scalar multiplication - with the same equations (248), (249) and (250) (C2,+) is also
known to be a group. We define P> in Cy with

(252) P, = (11559732032986387107991004021392285783925812861821192530917403151452391805634 X 4
+10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531 X 1
+8495653923123431417604973247489272438418190587263600148770280649306958101930)

We define G2 to be the subgroup of (C2,+) generated by P». G2 is known to be the only cyclic group of order g on Cs.
For a point P in G2, we define logp, (P) be the smallest natural number n satisfying n - P, = P. With this definition,
logp, (P) is at most ¢ — 1.

Let Gt be the multiplicative abelian group underlying F,i12. It is known that a non-degenerate bilinear map
e : G1 X G2 — Gr exists. This bilinear map is a type three pairing. There are several such bilinear maps, it does not
matter which is chosen to be e. Let Pr = e(Py, P2), a be a set of k points in G1, and b be a set of k points in G2. It
follows from the definition of a pairing that the following are equivalent

(253) logp, (a1) x logp, (b1) + - - +logp, (ax) x logp, (bx) = 1 mod q
k
(254) H e (ai, bz) = PT
i=0

Thus the pairing operation provides a method to verify (253)
A 32 byte number x € Pass might and might not represent an element of Fj,.

x ifx<p
255 1) =
(255) o(¥) { & otherwise

A 64 byte data x € Bs12 might and might not represent an element of G .

g1 ifg1 €G
256 1) =
(256) 1(x) {@ otherwise
if I N %)
(257) @ = { ifz 7Ny #
(%} otherwise
(258) = 0p(x[0..31])
(259) = 0p(x[32..63])

A 128 byte data x € B1p24 might and might not represent an element of Ga.

ge if g2 € Go

(260) o2(%) = {@ otherwise

(261) o = {((a:oi+yo),(x1i+y1)) fxo £ TNy #ADANT1EDTANY1 £ I
(5] otherwise

(262) z0 = 6p(x[0..31])

(263) Yo = 0p(x[32..63])

(264) 1 = p(x[64..95])

(265) i = 5p(x[96..127])

We define Ssnarkv as a precompiled contract which checks if (253) holds, for intended use in zkSNARK verification.



