
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BERLIN VERSION 14

9.4.2. Exceptional Halting. The exceptional halting func-
tion Z is defined as:
(149)
Z(σ,µ, A, I) ≡ µg < C(σ,µ, A, I) ∨

δw = ∅ ∨
‖µs‖ < δw ∨
(w = JUMP ∧ µs[0] /∈ D(Ib)) ∨
(w = JUMPI ∧ µs[1] 6= 0 ∧
µs[0] /∈ D(Ib)) ∨

(w = RETURNDATACOPY ∧
µs[1] + µs[2] > ‖µo‖) ∨
‖µs‖ − δw + αw > 1024 ∨
(¬Iw ∧ W (w,µ)) ∨
(w = SSTORE ∧ µg 6 Gcallstipend)

where

(150) W (w,µ) ≡ w ∈ {CREATE,CREATE2, SSTORE,
SELFDESTRUCT} ∨
LOG0 ≤ w ∧ w ≤ LOG4 ∨
w = CALL ∧ µs[2] 6= 0

This states that the execution is in an exceptional halt-
ing state if there is insufficient gas, if the instruction is
invalid (and therefore its δ subscript is undefined), if there
are insufficient stack items, if a JUMP/JUMPI destination
is invalid, the new stack size would be larger than 1024 or
state modification is attempted during a static call. The
astute reader will realise that this implies that no instruc-
tion can, through its execution, cause an exceptional halt.
Also, the execution is in an exceptional halting state if the
gas left prior to executing an SSTORE instruction is less
than or equal to the call stipend Gcallstipend – see EIP-2200
by Tang [2019] for more information.

9.4.3. Jump Destination Validity. We previously used D
as the function to determine the set of valid jump desti-
nations given the code that is being run. We define this
as any position in the code occupied by a JUMPDEST

instruction.
All such positions must be on valid instruction bound-

aries, rather than sitting in the data portion of PUSH

operations and must appear within the explicitly defined
portion of the code (rather than in the implicitly defined
STOP operations that trail it).

Formally:

(151) D(c) ≡ DJ(c, 0)

where:
(152)

DJ(c, i) ≡


{} if i > ‖c‖
{i} ∪DJ(c, N(i, c[i]))

if c[i] = JUMPDEST

DJ(c, N(i, c[i])) otherwise

where N is the next valid instruction position in the
code, skipping the data of a PUSH instruction, if any:
(153)

N(i, w) ≡


i+ w − PUSH1 + 2

if w ∈ [PUSH1,PUSH32]

i+ 1 otherwise

9.4.4. Normal Halting. The normal halting function H is
defined:
(154)

H(µ, I) ≡


HRETURN(µ) if w ∈ {RETURN,REVERT}
() if w ∈ {STOP, SELFDESTRUCT}
∅ otherwise

The data-returning halt operations, RETURN and
REVERT, have a special function HRETURN. Note also
the difference between the empty sequence and the empty
set as discussed here.

9.5. The Execution Cycle. Stack items are added or
removed from the left-most, lower-indexed portion of the
series; all other items remain unchanged:

O
(
(σ,µ, A, I)

)
≡ (σ′,µ′, A′, I)(155)

∆ ≡ αw − δw(156)

‖µ′s‖ ≡ ‖µs‖+ ∆(157)

∀x ∈ [αw, ‖µ′s‖) : µ′s[x] ≡ µs[x−∆](158)

The gas is reduced by the instruction’s gas cost and
for most instructions, the program counter increments on
each cycle, for the three exceptions, we assume a function
J , subscripted by one of two instructions, which evaluates
to the according value:

µ′g ≡ µg − C(σ,µ, A, I)(159)

µ′pc ≡


JJUMP(µ) if w = JUMP

JJUMPI(µ) if w = JUMPI

N(µpc, w) otherwise

(160)

In general, we assume the memory, accrued substate
and system state do not change:

µ′m ≡ µm(161)

µ′i ≡ µi(162)

A′ ≡ A(163)

σ′ ≡ σ(164)

However, instructions do typically alter one or several
components of these values. Altered components listed by
instruction are noted in Appendix H, alongside values for
α and δ and a formal description of the gas requirements.

10. Blocktree to Blockchain

The canonical blockchain is a path from root to leaf
through the entire block tree. In order to have consensus
over which path it is, conceptually we identify the path
that has had the most computation done upon it, or, the
heaviest path. Clearly one factor that helps determine the
heaviest path is the block number of the leaf, equivalent
to the number of blocks, not counting the unmined genesis
block, in the path. The longer the path, the greater the
total mining effort that must have been done in order to
arrive at the leaf. This is akin to existing schemes, such as
that employed in Bitcoin-derived protocols.

Since a block header includes the difficulty, the header
alone is enough to validate the computation done. Any
block contributes toward the total computation or total
difficulty of a chain.


